Bounds on the Achievable Rate for the Fading Relay Channel with Finite Input Constellations

نویسندگان

  • Vijayvaradharaj T. Muralidharan
  • B. Sundar Rajan
چکیده

We consider the wireless Rayleigh fading relay channel with finite complex input constellations. Assuming global knowledge of the channel state information and perfect synchronization, upper and lower bounds on the achievable rate, for the full-duplex relay, as well as the more practical halfduplex relay (in which the relay cannot transmit and receive simultaneously), are studied. Assuming the power constraint at the source node and the relay node to be equal, the gain in rate offered by the use of relay over the direct transmission (without the relay) is investigated. It is shown that for the case of finite complex input constellations, the relay gain attains the maximum at a particular SNR and at higher SNRs the relay gain tends to become zero. Since practical schemes always use finite complex input constellation, the above result means that the relay offers maximum advantage over the direct transmission when we operate at a particular SNR and offers no advantage at very high SNRs. This is contrary to the results already known for the relay channel with Gaussian input alphabet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Allocation Strategies in Block-Fading Two-Way Relay Networks

This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...

متن کامل

On the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels

In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...

متن کامل

Extension of the Coverage Region of Multiple Access Channels by Using a Relay

From practical and theoretical viewpoints, performance analysis of communication systems by using information-theoretic results is important. In this paper, based on our previous work on Multiple Access Channel (MAC) and Multiple Access Relay Channel (MARC), we analyze the impact of a relay on the fundamental wireless communications concept, i.e., coverage region of MARC, as a basic model for u...

متن کامل

Dispersion Analysis of Infinite Constellations in Ergodic Fading Channels

This thesis considers infinite constellations in fading channels, without power constraint and with perfect channel state information available at the receiver. Infinite constellations are the framework, proposed by Poltyrev, for analyzing coded modulation codes. The Poltyrev’s capacity, is the highest achievable normalized log density (NLD) of codewords per unit volume, at possibly large block...

متن کامل

Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel

In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1102.4272  شماره 

صفحات  -

تاریخ انتشار 2011